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A COMPARISOH OF TWO HODEL-DISCRIMINATION CRITERIA 

by Duane Meeter, Walter P i r i e ,  and W i l l i a m  Blot 

0. Summary 

Within the  las t  few years there  has been increased research 

involving a general izat ion of sequent ia l  analysis  problems i n  which the 

experimenter i s  allowed t o  design h i s  experiment sequent ia l ly .  Two 

d i f f e r e n t  approaches t o  t h i s  Sequential  Design ef Experiments o r  Model 

Discrimination problem have been m a d e  by Chernoff [ 4 ]  and Box and B i l l  131. 

This paper compares the two approaches through examples. Some minor 

modifications of Chernoff's procedures are shown t o  lead t o  improved 

r e s u l t s ,  

1. Background 

Chernoff's r e s u l t s  w e r e  obtained by l e t t i n g  the  cost  of sampling 

approach zero, i n  e f f e c t  allowing l a rge  samples. 

depends on Kullback information numbers and the  assumption tha t  the  

current  estimate f o r  the state of na ture  ( the t r u e  model) is  the  cor rec t  

The choice of experiments 

one. 

(act ions) ,  and a f i n i t e  number of states of nature  and choices of experi- 

ments. They have been extended t o  an i n f i n i t e  number of states of na ture  

by Albert  [l] and t o  k ac t ions  and an i n f i n i t e  choice of experiments by 

Bessler [ Z ] .  \?e summarize Chernoff's r e s u l t s  b r i e f ly .  

Chernoff's r e s u l t s  were obtained f o r  two possible  terminal decisions 

L e t  f(y,6,e) be the  probabi l i ty  dens i ty  of the  outcome of experiment 

e when 8 is  assumed t o  be the state of nature-  (For d i f f e r e n t  0 the  

densi ty  f may assume d i f f e r e n t  funct ional  forms.) 
j 

The information about 8 

1 
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i n  experiment e when 6 is assumed t r u e  i s  i 

L e t w ,  be the  set of a l l  6 such t h a t  sure  knowledge t h a t  6 E w 

t h a t  the  experimenter should take  ac t ion  a. 

would imply 
1 i 

i = l 9 . . - , k ,  and l e t  d(6) be 
1’ 

the  set of 

l ikel ihood 

l ikel ihood 

(n) where e 

outcome of 

a l l  w. except the w containing 8. L e t  ^e be the maximum 
1 i n 

estimate of 6 a f t e r  n observations, and l e t  5 

estimate r e s t r i c t e d  t o  the se t  d(gn). 

be the  maximum n 

L e t  

is  the  experiment se lec ted  f o r  the  nth observation, yn the 

the  nth experiment. ChernoffOs procedure i s  as follows: 

Stop sampling a t  the  nth observation and select the hypothesis of 
n 
1 zi(gn,8 ) > -log e ,  where c is the  cost  of an observation. n -  n i=l 

8 i f  

(n+l) = e ($  ) , where e (6  ) i s  the maximin strategy of the  Otherwise, l e t  P 

second player (Experimenter) i n  a Eame with Nature i n  which t h e  Davoff t o  

the Experimenter when Nature is using s t r a t egy  4 ,  t h e  t rue  state of Nature 

0 n -  

eO9 and the  Experimenter is using strategy e, is 

The value of the  game i s  

We are allowing the  p o s s i b i l i t y  t h a t  both Nature and the Experimenter may 

use randomized s t r a t e g i e s .  Note t h a t  t he  de f in i t i on  of e (n+u says t h a t  
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a t  each s tage  w e  w i l l  assume t h a t  t he  hypothesis with the  highest  l i k e l i -  

hood is t h e  t r u e  state of nature ,  and use maximin s t r a t egy  developed under 

t h a t  assumption. The in ten t ion  is, of course, t o  design experiments such 

t h a t  a f t e r  a number of observations have been taken 8 

probabi l i ty .  

= 8 with high n O  

Designing sequent ia l  experiments using information numbers makes 

1 2  i n t u i t i v e  sense, The information 1(6 , e  ,e) is the  expected value of the  

amount by which the  logarithm of the  l ikel ihood r a t i o  f o r  t e s t ing  8 

e2 w i l l  increase i f  

numbers imply the  stopping c r i t e r i o n  (-log e) w i l l  be achieved sooner. 

Simply maximizing information numbers may not  be w i s e ,  however, s ince  Nature 

can choose a d i f f e r e n t  s t r a t egy  (from among alternative hypotheses). 

order t o  accept hypothesis 

experiment good f o r  r e j ec t ing  one a l t e r n a t i v e  hypothesis may be poor f o r  

another. 

c -f 0) procedure A. 

(see Bessler [219 e.g.) Chernoff has shown f o r  procedure A: 

vs. 1 
is t rue ,  and experiment e is  used. Large information 

In  

w e  must  r e j e c t  a l l  competing hypotheses. An 

Theorem 2 among the  following r e s u l t s  j u s t i f i e s  (as  least as 

Under mild r e s t r i c t i o n s ,  some of which can be relaxed 

Lemma 1. L e t  the stopping r u l e  be  disregarded. T be the smallest 

integer such t h a t  6 ,  = 8 f o r  n T. Then the re  e x i s t  b and b > 0 such 0- 1- 2 
-b 2n - t h a t  Pr{T>n) 5 ble . 

Lemma 2. The expected sample s i z e  s a t i s f i e s ,  as c -+ 0, 

Lemma 3. The probabi l i ty  of e r r o r  (i.e. of accepting the  hypothesis t h a t  

eo E d(B0)) a = O(c). 
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Theorem 1, The r i s k  function R(8)  s a t i s f i e s  R(f3) 5 - { l +  o ( l ) ] c  log c/I(f3). 

Theorem 2. Any procedure f o r  which I ( 8 )  > 0 

- a l l  8 s a t i s f i e s  

R ( 8 )  = 0(-c log  c) 7 f o r  

R(f3) 2 -[1 + o ( l ) ] c  log c/I(e)  €or a l l  0.  

Chernoff has termed procedure A asymptotically optimal i n  the  sense 

t h a t  i f  another procedure has r i s k  subs t an t i a l ly  smaller than procedure A 

f o r  any 0 then i t s  r i s k  w i l l  be of a grea te r  order of magnitude f o r  some 

other  value of 0 ,  t h i s  argument applying as c -f 0. However i n  view of 

the statement of the  Theorem a b e t t e r  term might be asymptotically 

admissible. 

The approach of Box and g i l l  [4]  begins, on the o ther  hand, with 

k hypotheses o r  models symbolized by 8 ..., 0 1 9  k and the  concept of entropy, 
k - 

measured by - 1 pi log  pi, where p i s  the probabi l i ty  t h a t  hypothesis 8 
i i i=l 

is true.  Maximum entropy occurs when p = l / k ,  i = l,.ea9k; the  

information about t he  hypotheses i s  a t  a minimum. 

i 

Minimum entropy (grea tes t  

information) occurs as the  probabi l i ty  of one of the  hypotheses approaches 
k 

i=l 
one. i3efore the (n+lIst observation is  taken the  entropy is - 1 pnilog pni, 

where p 

have been made. Box and H i l l  seek t o  maximize the difference 

is  the  pos te r ior  p robab i l i t y ’ tha t  0 i s  t r u e  a f t e r  n observations n i  i 

R = entropy a t  input  - expected entropy a t  output 

where input  and output r e f e r  t o  before and a f t e r  the  taking of observation 

n+l. Instead of working with R which involves a d i f f i c u l t  i n t eg ra l ,  they 

use an upper bound D f o r  R which reduces t o  
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where f 

experiment e. 

s tands f o r  f (y ,e i ,e) ,  the  densi ty  of y under hypothesis and i 

We immediately recognize the  expression i n  square brackets  

as I(8i98.,e) + I ( 8  8 ,e) which i s  Kullback’s [ 6 ]  measure of divergence. 
3 j’  i 

Thus D is a weighted measure of divergence f o r  discriminating between a l l  

possible  pair ings of the  n hypotheses, the weights being the  products of 

the pos te r ior  p robab i l i t i e s  of t he  hypotheses a f t e r  n observations. 

c r i t e r i o n  can be expressed i n  anotner way. 

w a s  t rue ,  and wanted t o  maximize information about 8 

of any knowledge except t h e  magnitude of t he  p 

8. would be most d i f f i c u l t  t o  discr iminate  aga ins t  we might t r y  t o  

maximize 

This 

I f  w e  knew t h a t  hypothesis Bi 

j$i, i n  the absence 
j’ 

about which a l t e r n a t i v e  
n j  

J 

However since w e  assumed t h a t  8. was t r u e  when i n  f a c t  its pos te r ior  

probabi l i ty  i s  p 

Pni 

1 

i t  is  na tu ra l  t o  multiply t h e  above expression by n i  ’ 
and sum over i = 1, ... $k, yielding D. 

W e  note  three  things about t h i s  c r i t e r ion .  One is t h a t  i t  seems 

s t range  to maximize an upper bound t o  the expected change i n  entropy 

r a the r  than a lower bound. 

lpnj log f 

a t t a i n s  high probabi l i ty . )  

pick out  experiments t h a t  y i e l d  high information even though they 

correspond t o  hypotheses with low probabi l i t i es .  

t h a t  the  behavior of D may be  dominated by pnipni,[I(O 

where p p 

r e l a t i v e l y  large.  

amounts of information about hypotheses which are already c lose  t o  being 

(The bound i s  based on the  inequal i ty  

log(1p .f .> so t h a t  i t  w i l l  tend t o  sharpen as one hypothesis 
j j nJ J j 

The o ther  i s  t h a t  t h i s  c r i t e r i o n  may tend t o  

That is, i t  may happen 

eiO,e) + I(ei,,8i,e)] i’ 

is r e l a t i v e l y  small and the  expression in square brackets is 

Thus we may be  l ed  t o  experiments which y i e ld  l a rge  

n i  ni’  



6 

ru led  out  by the  previous data. 

4- 1(8  8 , e ) ] ,  so  t h a t  maximizing D r e s u l t s  i n  the  same choice of 

experiments whether p 

may y ie ld  q u i t e  d i f f e r e n t  choices of experiments than maximizing I(8Z,81,e). 

F ina l ly ,  i f  k=2, I) = p n l  p n2 [ I (e  1 ,8 2 ,e) 

2' 1 

i s  near one, whereas maximizing I(e1,e2,e) n l  Or Pn2 

On the  o ther  hand, the Chernoff procedure uses a maximin s t r a t egy  

appropriate i f  the  maximum l ikel ihood estimate 

This may lead  t o  " i n i t i a l  bungling", s ince,  i n  Chernoff's words, "At f i r s t  

i t  i s  des i rab le  t o  apply experiments which are informative f o r  a broad 

range of parameter values,  Maximizing the  Kullback-Liebler information 

number may g ive  experiments which are e f f i c i e n t  only when 6 is  close t o  

the  estimated value." 

asymptotic proper t ies  t o  assert themselves? A t  t h i s  point ,  i t  seems 

appropriate t o  examine these two procedures by means of examples. The 

f i r s t  two examples are from Bessler [2]. 

i s  the  s ta te  of nature .  

Another question is, how s m a l l  does c have f o r  the  

2. Examples 

Example 1. Choosing the  unusual coin out  of a set of k coins. 

L e t  the  probabi l i ty  t h a t  say coin number 1 y ie lds  heads be yp, 

whereas f o r  the o ther  k-1 coins i t  is  p,  where y and p are known and are 

not  equal t o  1, 

the  ttodd'i coin. 

L e t  ei, i = l,...,k, be the  hypothesis t h a t  coin i is 

The k possible  experiments are e, , i = 1,. . . ,k, t o  take 
A 

an observation from coin i, and the  k act ions are t o  accept 

@=ei. Le t t ing  I(0i,8j,ee) = I. (e ) denote the  information ij R 
eL about 8 when 8. is assumed t rue ,  5 1 

t he  hypothesis 

obtained by 
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S t r a t egy 

of Player I 

83 

= o  otherwise. 

a O b O .  . . o  

0 4 a  0 0 b 

Without l o s s  of general i ty ,  i t  can be assumed t h a t  a f t e r  n observations 

have been taken the estimate ^e of the  hypotheses Bi is equal t o  8 

same argument holds with a relabel ing of e's and 0 ' s  i f  ^e # 0 

matrix is shown below, 

The n 1' 

The payoff 1' 

Strategy of Player I1 
(Experimenter) 

= I *  (Nature) . 

. o  

elCl a o o . . O b  

I f  Nature chooses s t ra tegy  6 

Experimenter's winnings are l imited t o  

i = 2, ..., k with probabi l i ty  l/k-1 then the i' 

The Experimenter's maximin s t r a t egy  depends on a, b,  and k. 

Case I. If a - >.b/k-1, then the Experimenter's maximin s t ra tegy  is  t o  

choose e with probabi l i ty  1 and t h e  value of the game is  1 



C a s e  11. 

e 

I f  a < b/k-1, the  Experimenter's maximin s t r a t egy  is t o  choose 

i = 2, ..., k with probabi l i ty  l /k-1 and the  value of the  game is i' 

I(el) b/k-1. 

For t h i s  example it is a l s o  possible  to pred ic t  what t he  Box-Hill 

procedure w i l l  do. For experiment e .e 

I (e ) + Iji(el) = a+b 
i j  4 

= o  

i f L =  i o r  j 

otherwise, 

so t h a t  

Maximizing D is equivalent  t o  minimizing lpd - 1/21 which, i f  k>2, i s  

eq\i-ivalent t o  the  r u l e  "choose the  coin with the  l a r g e s t  l ikel ihood (or 

pos te r io r  probabi l i ty )"  

possible.  

* 
If k-2 then D(el) = D(e ) so no decis ion is 2 

I n  t h i s  case, w e  made an a r b i t r a r y  decis ion t o  randomize 

between e and e This procedure y i e lds  (a+b)/2 u n i t s  of information 1 2' 

whereas the  Chernoff procedure should y i e l d  max(a,b) u n i t s  of information, 

For k>2, i f  a z b / k - l  the  Box-Hill and Chernoff procedures are i d e n t i c a l  

whereas i f  a < b/k-1, Nature can plan any s t r a t e g y  and the  Experimenter 

w i l l  be l imi ted  to  a payoff of a uni t s .  Following Bessler, w e  might say 

therefore  t h a t  t he  (asymptotic) e f f ic iency  of the  Box-Hill procedure 

r e l a t i v e  to Chernoff's is 

* 
In each of t he  three  examples i n  t h i s  paper, we have assumed equal p r i o r  
p r o b a b i l i t i e s  l / k  f o r  each state of nature ,  BiY i = l,...,k, where required. 
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E e l  i f  k>2, a 2 b/k-1 

= a/(b/k-1) i f  k>2, a < b/k-1 

= (a+b)/2 max(a,b) i f  k=2, 

i n  the sense t h a t  ( r e fe r r ing  t o  Lema 2 and Theorem 1) w e  might expect 

t ha t ,  f o r  s u f f i c i e n t l y  s m a l l  cost  c of a s ing le  observation, the  above 

r a t i o  t70Uld approach the  r a t i o  of r i s k s  o r  of average sample numbers f o r  

the  two procedures. Values of a, b,  and k such t h a t  t he  Box-Hill procedure 

would be expected t o  be a t  a disadvantage occur only when y is  not  too 

close t o  1 and k is s m a l l .  For example, see Table 1. By symmetry, t he  

e f f i c i enc ie s  hold a l so  f o r  p0 = 1-p, yOpO = 1-yp. 

Table 1. Predicted Efficiency of Box-Hill Procedure for Case 11. 

.1 .5 .1 .1 .5 .1 

.90 .80 .75 .99 .81 .68 -54 

In  Case 11, i t  is possible  t o  modify Chernoff's procedure yielding 

an improved procedure asymptotically equivalent t o  A which w e  will call  

procedure i: 

hypothesis among the  a l t e rna t ives  t o  ^e. Clearly,  f o r  l a rge  samples, 8 

w i l l  be ei, i = 2,. . . ,k with approximately equal frequency so t h a t  i t s  

asymptotic proper t ies  should be the same as t h a t  of A. 

e s s e n t i a l l y  the same procedure described i n  Chernoff [ 4 ]  as: Player 2 

(Experimenter) selects e f o r  observation n+l as though Nature is going t o  

use t h a t  s t r a t egy  which repeated n t i m e s  would have been most e f f e c t i v e  

against  the  combination of the  pas t  choices of the Experimenter. 

choose t h a t  coin corresponding t o  5 ,  the maximum l ikel ihood 

If b>a, t h i s  is 
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- Standard Range Empirical 
Procedure N Deviation of N Efficiencv 

A 13.8 k 1.0 9.6 2-51 - 
Box-Hill 14.5 rt 1.0 9.7 2-57 - 95 

Table 2. Results of a Simulation f o r  C a s e  11, Example 1. 

Predicted 
Efficiency 

1.0 

.77 

- Standard 
Procedure N Deviation 

A 34.7 k 2.3 22.8 

Range Empirical Predicted 
of N Efficiency Ef f ic iencv  
10-111 - 1.0 

Procedure 

A 

Box-Hill 

A 
- 

Box-Hill 35.6 rt 2.2 22.5 I 10-120 -97 .95 

Procedure would not  be  expected t o  perform w e l l  i n  Case I, s ince  

I 

N 

201 k 13.8 

140 rt 5.0 

115 k 6.9 

(asymptotically) s e l ec t ing  8 i = 2, .  ..,k with equal frequency would 

y i e ld  b/k-1 u n i t s  of information against  Nature's bes t  s t r a t egy ,  while 

s e l ec t ing  the coin corresponding t o  should y i e l d  a t  least a u n i t s  of 

i' 

7 

Standard Range E m p i r i c a l  Predicted 
Deviation of N Efficiency Efficiency 

138.2 28-614 - 1.0 

50.3 95-322 1.44 .80 

68.8 18- 3 86 1.75 1.0 

information against  any s t r a t egy  of Nature. I n  Table 2 w e  have l i s t e d  

some r e s u l t s  of simulations of procedures A, A, and t h a t  of Box and H i l l  

f o r  combinations of y ,  p and k leading t o  Case 11. I n  each case, the 
n 

A -  

c r i t e r i o n  f o r  termination w a s  1 zi(en,en) - > -log c, with c = 1/99, i.e., 
i=l 

the  l ikel ihood of ^en r e l a t i v e  t o  8 had t o  exceed 99/1. The quant i ty  n 

-log c/I is t h e  approximation t o  the  average sample number f o r  procedure A 

given by Lemma 2. One hundred simulation runs were made f o r  each row of 

the table;  beside each E is an estimate of i t s  standard e r ro r .  fn t e re s t -  
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ingly,  i n  none of the seven hundred runs represented i n  t h i s  t ab le  was 

the  t rue  hypothesis re jected.  

W e  immediately not ice  severa l  things about t h i s  table .  F i r s t ,  the  

Box-Hill procedure i s  probably not  as  i n e f f i c i e n t  as Table 1 would suggest 

and i n  f a c t  i s  q u i t e  superior  t o  A f o r  the  k=3 example. Procedure 

the o ther  hand is an even g rea t e r  improvement and the r a t i o  of its 

empirical  Average Sample Number (ASN) t o  t h a t  of the  Box-Hill procedure 

(115/140 = .82) is  very close t o  the e f f ic iency  predicted f o r  Box-Hill 

r e l a t i v e  t o  Chernoff's procedure A. There is  some suggestion t h a t  the  

approximation -log c/I t o  the ASN is not as good f o r  l a rge r  values of k. 

To explore t h i s  fu r the r ,  another simulation was made, t h i s  t i m e  f o r  Case I 

( a  > b/k-1), with -y=.9, p=.5, so t h a t  a=.OO5008, b=.0050025. F i f t y  runs 

were made f o r  k=3, 6 ,  and 12. The Box-Hill and Chernoff procedures give 

i d e n t i c a l  r e s u l t s  f o r  Case I, but w e  compared t h e i r  procedures instead t o  

the  "no design" procedure which merely takes k observations, one on each 

coin, between each l ikel ihood r a t i o  test. 

simulation w a s  t o  randomly choose a coin f o r  each observation and test 

a f t e r  each observation, which should give f a i r l y  similar resu l t s . )  It is 

easy t o  see t h a t  Nature can hold t h i s  s t ra tegy  t o  a gain of (a+b)/k u n i t s  

of information p e r  observation while the maximin s t r a t egy  can y i e ld  a 

u n i t s  of information. The r e s u l t s  are shown i n  Table 3. 

on 

(What w a s  ac tua l ly  done i n  the 

It is evident t h a t  the approximation t o  the ASN breaks down with 

increasing k. 

is taken up with t ry ing  each of the  coins a s u f f i c i e n t  number of t i m e s  

u n t i l  the odd coin es tab l i shes  a considerable lead. 

remainder of the observations are taken on a s ing le  coin. 

This i s  because an increasingly g rea t e r  p a r t  of the sample 

Once t h i s  happens the 
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Procedure 

A 

"No Design" 

Table 3. Results of a Simulation f o r  Case I, Example 1. 

I Standard Range Empirical Predicted 
N Deviation of N Efficiency Efficiency 

1 , 518*135 953 234-5,oa~ - 1. 

2 695 "125 881 h462-5 , 416 .563 .67 k=3 

k=6 
A 

N o  Design" I1 

'2,713*180 1 1,273 677-5,953 - 1. 

8 896*304 2,150 5b63-14,725 .305 .333 

I 

A 
k=12 

No Design" 

6,060*508 3,589 1360-19,649 

24,206*771 5,451 16 &1%3&3 0 3 
- 

The predicted e f f i c i enc ie s  are f a i r l y  accurate,  and do not  say much 

i n  favor of non-design sequent ia l  experiments when a choice of experiments 

i s  avai lable .  

resu l ted  i n  accepting the  wrong hypothesis. 

A s  i n  the previous simulation, none of the  300 runs 

We now take up an example 

involving normal populations. 

Example 2. Ident i fying three  normal populations with known means and 

common known variance. 

and a are three  normal populations with known 1' " 2 7  3 Suppose t h a t  a 

2 m e a n s  (p y p  9 v  ) respect ively and known common variance CJ , Suppose 

p1 > v2 > p3. 

s i x  poss ib le  hypotheses t h a t  the  experimenter can accept: 

1 2 3  

The following s i x  permutations of (pl,v2,v3) represent  the  



13 

82 

83 

e4 

OS 

Nature ’ s 

Strategy 

‘6  

The three  poss ib le  experiments e are t o  select an observation from popula- 

t i o n  n 

q=b /a, where 

i 

i = 1,2,3. The maximin s t r a t e g i e s  computed by Bessler depend on i’ 

0 b2/2 b2/2 

a2/2 a2/2 0 

a2/2 b2/2 (a+b)2/2 

(a+b) 2/2 a2/2 b2/2 

(a+b) 2 /2  0 (a+b) / 2 

The information i n  observations from normal populations about hypotheses 

say H’ and H” d i f f e r ing  only i n  the  spec i f i ca t ion  of the mean is  

where p# and p” are the means spec i f ied  i n  the  two hypotheses. The payoff 

matrix f o r  the Experimenter‘s game with Nature is  given below, assuming 

without l o s s  of genera l i ty  t h a t  8 (If ^e = 6 

3 j#l, then w e  j u s t  interchange the  s t r a t e g i e s  f o r  playing el, e2, and e 

t o  correspond t o  the  interchanges of ( V ~ , P ~ , I . I ~ )  i n  going from 6 

is the  hypothesis of Gn. 1 n j’ 

t o  e .) 
1 3 

Experimenter’s Strategy 

L e t  X = ( A  A X ) be the  p robab i l i t i e s  fo r  a randomized s t ra tegy  

3. 

1’ 2’ 3 

( for  the  Experimenter) over el, e2 and e 

maximin s t ra tegy.  

There are three  cases t o  the  

2 2 
L e t  u = (l+q) , s = l / ( l+q  ) 
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Case I. u/(u+l) < q2 < u/(u-1) (.883 q < 1.132) 

X = [l - 2su/(u-s+l), u - (l-s)/(u-s+l), 1 - 2u(l-s)/(u-s+l)l 

2 L 

I='i 1 4- 1/q2 + l / ( l+q)  

Table 4 shows the  r e s u l t s  of some simulation experiments f o r  Case 

11. 

Using the c r i t e r i o n  of a 99/1 l ikel ihood r a t i o  f o r  the hypotheses with the  

l a rges t  l ikel ihoods,  the  t rue  hypothesis w a s  re jec ted  34 t i m e s  i n  the 

3034 runs. (Runs accepting the  wrong hypothesis were not included i n  the 

f igures  i n  the  table.) Procedure A was  used i n  two ways. 

2 used X = 1 - l / q  , t he  upper bound. 

i n f e r i o r  t o  the  Box-Hill procedure f o r  the  two cases t r i e d ,  q = 

3' q=4. 

However, occasionally Nature ignores her  own b e s t  i n t e r e s t s  and plays B2 

Two hundred runs were made f o r  each set of experimental conditions. 

Procedure A1 

This can be seen t o  be de f in i t e ly  

and 

1 

Now Nature's minimax s t r a t egy  f o r  Case I1 is the pure s t r a t egy  0 

a teg ies  8 an 0 are not of ten  used s ince  they are both 4 5 

dominated by e3. Procedure A2 selects X t o  equal ize  the information 1 
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Procedure 

Theore t ica l  Empir i cal 
- Std. Range Mixed Strategy Mixed St rs tegy  

Errors  N Dev. of N (X19h23X3) (i1, ~2 > ~ 3 )  
-.------ 

2 60.2 k 1.8 25.8 22-170 (.50,.50,0) (.48,.44,.08) 

49.3 k 1.3 19.0 22-131 (.26,.74,0) 

Box-Hill /I 159.9 k 1.6 122.5 123-149 1 - 

Procedurc 

(.31,.59,.10) 

(;27,.59, .14) 

4 
A2 

BOX-Hil l  

- Std. Range 
Procedure Errors  N Dev. of N 

2 229 k 6.7 94.6 89-669 

3 190 k 6.4 90.9 81-705 

Box-Hi 11 2 191 k 6.8 96.7 85-674 
A2 

Procedure 

Theoret ical  Empirical 
Mixed Strategy Mixed Strategy 

( ~ 1 , ~ 2 , ~ 3 )  . (ii,X2 9 i 3 )  

(.50,.50,0) (.48,.44,.08) 

(.26,.74,0) (.32,.59,.09) 
- 1 (.28,.62,.10) 

% 
A2 

B o x - H i l l  

Errors  

3 

2 

3 

Theoret ical  Empirical - Std. Range Mixed Strategy Mix$d Strategy 
N Dev. of N (X13X2 2 1 3 )  (AI, i2 , i3 )  

853 k 24.5 346 373-2298 (.50,.50,0) (.49,.45,.06) 

794 k 25.0 353 357-2001 (.26,.74,0) (.32,.60,.08) 

746 k 23.5 333 342-2219 - (.26, .61, .13) 

Std. Range 
Dev. of N 

92 53-617 

93 41-525 

100 43-606 

Theoret ical  Empirical 
Mixed Strategy Mixed Strategy 

(hl¶hZYA3) (fil,X2,X3) 

(15/16,1/16,0) (.77,.21,.02) 

(. 43,. 55 , 02) 

(.42,.54,.04) 

(. 39,. 61,O) 

Errors  

1 

4 

3 

- 
N 

188 k 6.5 

153 k 6.6 

156 k 7.1 

4 

Theoret ical  
- Std. Range Mixed Strategy 

Procedure Errors  N Dev. of N Oll,X23A3) 

4 727 k 2 5 . 8  365 147-2246 (15/16,1/16,0) A1 

Empirical 
MixFd Str9tegy 

(hiyX2 3x3) 

(.80,.19,.01) 
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I 
- Std. Range 
N Dev. of N 

64.9 k 1.8 25.6 29-161 

63.7 * 1.7 23.6 29-163 

coming from e when Nature uses 86 with the  information coming from e2 

when Nature uses 820 namely A1 = l /( l+(a+b) /b ). 

t ab l e  t h a t  A2 i s  as good as the  Box-Hill procedure, while still  being 

maximin. 

1 
2 2  It can be seen from the  

The "empirical mixed s t ra tegy"  l i s t e d  i n  the  t a b l e  is t h e  proportion 

Theoret ical  Empirical 
Mixed Strategy Mixcd 2trptegy 

(Xl,A2,A3) (Xl,h2,A3) 

( . l 19*78 , . l l )  (.21,.61,.18) 
- (.20, .61, .19) 

of t i m e s  each of t he  three  populations w a s  se lec ted  over 200 simulations.  

Std. Range 
Procedure Errors  N Dev. of N 

A 1 266 k 8.1 114 100-778 

Box-Hill 2 230 2 5.5 77 117-507 

The ac tua l  frequencies var ied from run t o  run, pa r t i cu la r ly  f o r  the Box- 

H i l l  method, depending on which hypotheses had the  highest  p robab i l i t i e s .  

A f i n a l  run was made simulating the  Case I s i t u a t i o n ,  with q=l. 

The r e s u l t s  are shown i n  Table 5. 

Theoret ical  Empirical 
Mixed Strategy mx:d 5trategy 

(+A2 ,A3) ( A l J 2  3,) 
(.11,.78,.11) (.21,.58,.21) 

( 18, .62 ?. 20) - 

Table 5. Results of a Simulation f o r  Case I, Example 2. 

Theoret ical  Empirical 
- Std. Range Mixed Strategy Mixed Strategy 

Procedure Errors  N Dev. of N (X19hz ,Xg) ( i l ,X2 ?fi3> 

Box-Hill I 0 918 * 23.91338 473-2004 - 
A 5 1084 * 31.5 445 434-2916 ( . l l y .78 , . l l )  (.22,.57,.21) 

I (.21,.62,.17) - 



1 7  

For Case I, q=l ,  the  maximin s t r a t egy  is h = (1/9,7/9,1/9). The 

t rue  hypothesis w a s  re jec ted  i n  12 of 1212 simulations i n  t h i s  table.  

Box-Hill procedure is c lear ly  superior.  Note t h a t  the asymptotic optima- 

l i t y  of Chernoff's procedure A is proved f o r  s u f f i c i e n t l y  s m a l l  c, not f o r  

l a rge  n, so t h a t  w e  cannot necessar i ly  expect procedure A t o  exhib i t  its 

optimality even f o r  these l a rge  samples without decreasing c from the  1/99 

used i n  the examples presented. 

The 

Example 3. Distinguishing an exponential from oolvnomial models. 

Consider the following regression hypotheses: 

el: E(y) = 

e2: E(Y) = 

63: E(y) = 

e4: E(y) = 

e5: E(y) = 

Here our hypotheses are not  points  bu t  ac tua l ly  sets in a multidimensional 

parameter space. 

hypotheses as s p e c i a l  cases of the  model E(y) = B o +  B1x + B2x + B3 exp(B4x). 

We add the assumption t h a t  t he  observations y are normally d i s t r ibu ted  about 

E(y) f o r  the  t rue  model with mean zero and variance CJ . 
derived an expression f o r  the probabi l i ty  densi ty  of a fu tu re  observation 

Yn+l 

f o r  the unknown parameters,, and assuming t h a t  non-linear models are 

approximately l i n e a r  near the maximum l ikel ihood estimates of t h e i r  

parameters. 

is normal with mean 

A more prec ise  descr ipt ion would state a l l  of the  

2 

2 Box and H i l l  have 

given n previous observations and loca l ly  uniform p r i o r  d i s t r ibu t ions  

The densi ty  of a fu tu re  observation yn+l under hypothesis Oi 
2 
i' n and variance CJ' + u where G(i) is the  predicted 
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value of y under hypothesis Bi and a: = Var(G2)).  From t h i s  were 

calculated the  information numbers and the  c r i t e r i o n  D of Box and H i l l .  

The information numbers are 

The choice of t he  experiment w a s  made by choosing a level f o r  the  independ- 

en t  var iab le  from the  set 0,1/4,2/4,. ..,15/4,16/4 at each s tage;  t h i s  

a f f e c t s  the  information numbers through the  predicted values i ( i )  and ;(’) 

and t h e i z  variances.  To use  procedure A, information numbers were 

calculated assuming t h a t  the  hypothesis cur ren t ly  with highest  l ikel ihood 

is the  t r u e  state of nature ,  and assembling a 4x17 payoff matrix. Since 

it w a s  deemed impossible t o  compute the  Experimenter’s maximin s t r a t egy  

ana ly t i ca l ly ,  l i n e a r  programming methods were used at each s t age  to  solve 

the matrix game and compute the  s t ra tegy .  Parameters i n  each of t he  

models were re-estimated by least squares a f t e r  each stage.  The da ta  

were generated by adding normal (0,l) pseudorandom numbers t o  the  model 

of hypothesis 6 the  exponential  nodel, with = 1 and B = -75. I n  5 ,  52 

the  f i r s t  set of experiments reported below i n  Table 6 w e  took a 

preliminary sample of f i v e  observations a t  x = 0 ,  1, 2, 3, 4 t o  estimate 

the  parameters i n  the  model. One hundred simulations were run f o r  each 

row of the  table.  Since there  were a r e l a t i v e l y  l a r g e  number of errors, 

the  r e s u l t s  f o r  runs which r e j ec t ed  the  t r u e  hypothesis were analyzed 

separately.  

reject any hypothesis o r  model as soon as i ts  l ike l ihood relative t o  t h a t  

One modification of both procedures t h a t  w a s  t r i e d  w a s  to  

of t h e  hypothesis of ^e w a s  less than Experiments which used this 

modification are indica ted  i n  the  t h i r d  column of the  table. 
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Table 6. Discrimination of an Exponential with Five In i t ia l  Observations 

3rOp poor 
models? 

Y e s  

Y e s  

N o  

N o  

Y e s  

Y e s  

N o  

No 

Runs accepting e5 

Std. Range 
C N Dev. of N 

- 

1/99 5.965.48 4.15 2-20 

1/99 5.00k.29 2.71 2-15 

1/99 6.51-1.36 3.04 1-15 
1/99 4,742.24 2.25 2-13 

119999 11.29k.67 6.12 3-41 

119999 7.96k.44 4.24 3-26 

119999 9.93-1.59 5.33 3-30 
119999 7.11k.38 3.47 3-24 

The most s t r i k i n g  f ea tu re  of t h i s  t a b l e  i s  t h a t  the  proportion of er rors  o r  

re jec t ions  of the exponential model is, unl ike the f i r s t  two examples, no t  

approximately equal t o  the  l ikel ihood r a t i o  c r i t e r i o n  c. 

unreported calculat ion,  with hypothesis e5 omitted and da ta  generated from 

hypothesis 03, ne i the r  procedure made any e r ro r s  i n  100 simulations,)  

Thus the  a b i l i t y  t o  d is t inguish  an exponential from quadrat ic  polynomials 

provides a severe test f o r  these two procedures. A second experiment was 

run i n  which the i n i t i a l  sample w a s  20 observations, obtained by 

rep l ica t ing  the design x = 0, 1, 2, 3, 4 four  t i m e s .  

(In an earlier 

These two tab les  y i e ld  the following conclusions about this example: 

a. The Box-Hill procedure performs cons is ten t ly  b e r t e r  than 

Chernoff's procedure A i n  e r r o r  rate, ASN, and range of N, 

b. As expected, increasing the s i z e  of the  i n i t i a l  "non- 

designed" sample decreases the  e r r o r  rate (but prohibi t ing termination of 

the experiment before twenty observations had been taken would also 

accomplish t h i s ) .  
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Table 7. Discrimination of an Exponential with Twenty I n i t i a l  Observations 

'rocedure 

A 

Box-Hill 

A 

Box-Hill 

A 

Box-H~U 

A 

Box-Hill 

k r o r s  

5 

3 

7 

5 

3 

0 

8 

2 

trop poor 
models? 

Y e s  

Y e s  

N o  

No 

Y e s  

Yes 

N o  

N o  

C - 
1/99 

1/99 

1/99 

1/99 

1/9999 

119999 

1/9999 

1/9999 - 

Runs accepting O K  

- 
N 

1.58k. 28 

1 . 6 b . 2 1  

1.76k. 22 

1.67+. 19 

3.80+. 40 

2.772.22 

3.92k.43 

2,905.22 

- 
Std. 
& 
2.72 

2.07 

2.09 

1.88 

3.90 

2.22 

4.14 

2.13 - 

tange 
,f N 

0-21 

0-10 

Or14 

0-9 

1-2 3 

0-12 

1-21 

0-13 - 

Runs re 

- 
N 

2.60-+. 51 

2.67k.33 

2.142.40 

3.4 2.81 

6.W 1.53 

- 

6.0k2.0 

zcti - 
Std. 
Dev, 
L.14 

.58 

1.07 

1.81 

2.64 

- 
1.58 

2.83 - 

% a g e  
3f N 

1-4 

2-3 

1-4 

1-6 

3- 8 

- 

2-6 

4-  8 - 

c. Dropping out poor models has a benef ic ia l  e f f e c t  on the ASN 

f o r  runs accepting 8 

these runs. It has a benef ic ia l  e f f e c t  on the e r r o r  rate. 

while it seems t o  increase the maximum of N f o r  5' 

d. With f i v e  i n i t i a l  observations, runs re jec t ing  O5 have a 

higher ASN; wi th  twenty i n i t i a l  observations, the s i t u a t i o n  is  reversed. 

3. Conclusion 

Two procedures f o r  sequent ia l ly  designing experiments t o  select the 

correct model o r  state of nature  have been compared. 

A is asymptotically optimal f o r  experiments with s u f f i c i e n t l y  small costs 

of experimentation, bu t  as w e  have seen t h i s  assumption may not  be 

s a t i s f i e d  i n  p r a c t i c a l  problems involving even la rge  samples. 

cases i t  is possible  to  modify procedure A t o  achieve much more e f f i c i e n t  

"large c" performance without a f fec t ing  the  maximin character of the  s t ra tegy.  

Chernoff's procedure 

In some 



However unless 

given problem, 

computations. 

2 1  

the  maximin procedure can be computed ana ly t i ca l ly  f o r  a 

the maximin procedure involves d i f f i c u l t  and time-consuming 

The Box-Hill procedure, on the  other  hand, performs w e l l  on these 

examples probably because i t  avoids over-committing t o  a s ing le  s t r a t egy  

u n t i l  one hypothesis is d e a r l y  favored. 

propert ies  and can perform poorly as i n  C a s e  I1 of Example 1. 

performance on o ther  problems suggests t h a t  fu tu re  progress in t h i s  area 

depends on the  development of procedures tha t  use i n i t i a l  samples t o  dis-  

cover the most promising hypotheses and then make the  t r ans i t i on  to some 

type of maximin procedure. 

who prove asymptotic opt imal i ty  f o r  design procedures which take an 

i n i t i a l  sample t o  discover the  state of nature  and then design one f i n a l  

la rge  sequent ia l  experiment. 

t o  tend t o  i n f i n i t y  i n  such a way t h a t  its proportion of t he  total  

sample tends t o  zero. 

preliminary sample e f f i c i e n t l y .  

spec ia l  cases, but not  without d i f f i cu l ty .  Also, Lorden [ 7 ]  has obtained 

bounds on the  increase r e l a t i v e  t o  Bayes tests i n  r i s k  (averaged over the 

p r i o r  p robab i l i t i e s  of the hypotheses) of some asymptotically optimal 

sequent ia l  tests so t h a t  one can compute the loss i n  e f f ic iency  involved i n  

designing experiments optimal f o r  e-@, when i n  fact c is not  too small. 

However, i t  has no known optimal 

Its good 

This idea  is l i k e  t h a t  of Kiefer and Sachs 161, 

The s i z e  of the  i n i t i a l  sm-ple is specif ied 

However l i t t l e  is  known about how t o  design t h i s  

Results have been obtained f o r  simple 
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